微信关注,获取更多

二元函数可微的充要条件公式 函数可微性怎么证明




各位老铁们,大家好,今天由我来为大家分享二元函数可微的充要条件公式,以及函数可微性怎么证明的相关问题知识,希望对大家有所帮助。如果可以帮助到大家,还望关注收藏下本站,您的支持是我们最大的动力,谢谢大家了哈,下面我们开始吧!

本文目录

  1. 如何判断函数的可微性
  2. 什么条件可以判断函数可微呢
  3. 如何判断函数是否可微呢
  4. 如何判断一个函数可微
  5. 怎样判断函数是否可微多元函数可微的条件是什么

一、如何判断函数的可微性

根据函数可微的必要条件和充分条件进行判定:

若函数在某点可微分,则函数在该点必连续;

若二元函数在某点可微分,则该函数在该点对x和y的偏导数必存在。

若函数对x和y的偏导数在这点的某一邻域内都存在,且均在这点连续,则该函数在这点可微。

设函数y=f(x),若自变量在点x的改变量Δx与函数相应的改变量Δy有关系Δy=A×Δx+ο(Δx),其中A与Δx无关,则称函数f(x)在点x可微,并称AΔx为函数f(x)在点x的微分,记作dy,即dy=A×Δx,当x=x0时,则记作dy∣x=x0。

二、什么条件可以判断函数可微呢

1、要证明一个函数可微,必须利用定义,即全增量减去(对x的偏导数乘以x的增量)减去(对y的偏导数乘以Y的增量)之差是距离的高阶无穷小这个必要条件,才能说明可微。

2、对于一元函数而言,可微必可导,可导必可微,这是充要条件;

3、对于多远函数而言,可微必偏导数存在,但偏导数存在不能推出可微,而是偏导数连续才能推出可微来,这就不是充要条件了。

4、在微积分学中,可微函数是指那些在定义域中所有点都存在导数的函数。可微函数的图像在定义域内的每一点上必存在非垂直切线。因此,可微函数的图像是相对光滑的,没有间断点、尖点或任何有垂直切线的点。

5、一般来说,若X是函数ƒ定义域上的一点,且ƒ′(X)有定义,则称ƒ在X点可微。这就是说ƒ的图像在(X,ƒ(X))点有非垂直切线,且该点不是间断点、尖点。

6、实践中运用的函数大多在所有点可微,或几乎处处可微。但斯特凡·巴拿赫声称可微函数在所有函数构成的集合中却是少数。这表示可微函数在连续函数中不具代表性。人们发现的第一个处处连续但处处不可微的函数是魏尔斯特拉斯函数。

三、如何判断函数是否可微呢

先用定义求出该点的偏导数值c,再用求导公式求出不在该点时的偏导数fx(x,y),最后求fx(,x,y)当(x,y)趋于该点时的极限,如果limfx(x,y)=c,即偏导数连续,否则不连续。

设有二元函数 z=f(x,y),点(x0,y0)是其定义域D内一点。把 y固定在 y0而让 x在 x0有增量△x,相应地函数 z=f(x,y)有增量(称为对 x的偏增量)△z=f(x0+△x,y0)-f(x0,y0)。

如果△z与△x之比当△x→0时的极限存在,那么此极限值称为函数 z=f(x,y)在(x0,y0)处对 x的偏导数,记作 f'x(x0,y0)或。函数 z=f(x,y)在(x0,y0)处对 x的偏导数,实际上就是把 y固定在 y0看成常数后,一元函数z=f(x,y0)在 x0处的导数。

判断可导、可微、连续的注意事项:

1、在一元的情况下,可导=可微->连续,可导一定连续,反之不一定。

2、二元就不满足以上的结论,在二元的情况下:

(1)偏导数存在且连续,函数可微,函数连续。

(2)偏导数不存在,函数不可微,函数不一定连续。

(3)函数不可微,偏导数不一定存在,函数不一定连续。

(4)函数连续,偏导数不一定存在,函数不一定可微。

(5)函数不连续,偏导数不一定存在,函数不可微。

dz=f1'(2xdx-2ydy)+f2'(1dx-1dy)/(x-y),即:

dz=[2xf1'+f2’/(x-y)]dx-[2yf1'+f2’/(x-y)dy,

根据全微分与偏导数的关系,得:

dz/dy=-[2yf1'+f2’/(x-y)。

求z对x的偏导数时,把y看成常数,此时有:

dz/dx=f1'*(2x-0)+f2'*(1-0)/(x-y)

同理,求z对y的偏导数时,x看成常数,则:

dz/dy=f1'*(0-2y)+f2'*(0-1)/(x-y)

四、如何判断一个函数可微

若函数在某点可微分,则函数在该点必连续;

若二元函数在某点可微分,则该函数在该点对x和y的偏导数必存在。

若函数对x和y的偏导数在这点的某一邻域内都存在,且均在这点连续,则该函数在这点可微。

多元函数可微的充分必要条件是f(x,y)在点(x0,y0)的两个偏导数都存在。

设函数y= f(x)在某区间内有定义,x0及x0+△x在这区间内,若函数的增量Δy= f(x0+Δx)− f(x0)可表示为Δy= AΔx+ o(Δx),其中A是不依赖于△x的常数, o(Δx)是△x的高阶无穷小,则称函数y= f(x)在点x0是可微的。

AΔx叫做函数在点x0相应于自变量增量△x的微分,记作dy,即:dy=AΔx。微分dy是自变量改变量△x的线性函数,dy与△y的差是关于△x的高阶无穷小量,我们把dy称作△y的线性主部。

导数的记号为:(dy)/(dx)=f′(X),我们可以发现,它不仅表示导数的记号,而且还可以表示两个微分的比值(把△x看成dx,即:定义自变量的增量等于自变量的微分),还可表示为dy=f′(X)dX。

五、怎样判断函数是否可微多元函数可微的条件是什么

若函数在某点可微分,则函数在该点必连续;

若二元函数在某点可微分,则该函数在该点对x和y的偏导数必存在。

若函数对x和y的偏导数在这点的某一邻域内都存在,且均在这点连续,则该函数在这点可微。

多元函数可微的充分必要条件是f(x,y)在点(x0,y0)的两个偏导数都存在。

设函数y= f(x)在某区间内有定义,x0及x0+△x在这区间内,若函数的增量Δy= f(x0+Δx)− f(x0)可表示为Δy= AΔx+ o(Δx),其中A是不依赖于△x的常数, o(Δx)是△x的高阶无穷小,则称函数y= f(x)在点x0是可微的。

AΔx叫做函数在点x0相应于自变量增量△x的微分,记作dy,即:dy=AΔx。微分dy是自变量改变量△x的线性函数,dy与△y的差是关于△x的高阶无穷小量,我们把dy称作△y的线性主部。

导数的记号为:(dy)/(dx)=f′(X),我们可以发现,它不仅表示导数的记号,而且还可以表示两个微分的比值(把△x看成dx,即:定义自变量的增量等于自变量的微分),还可表示为dy=f′(X)dX。

未经允许不得转载:考研资讯网 » 二元函数可微的充要条件公式 函数可微性怎么证明

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

微信扫一扫打赏